
Tetrahedron
Tetrahedron Letters 45 (2004) 5803–5806

Letters
Synthesis of oligonucleoside phosphorodithioates by the
H-phosphonothioate method
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Abstract—The phosphorodithioate octamer [(TpS2)7T] was efficiently synthesized using bis(2,6-dimethylphenyl) phosphorochlori-
date as a coupling agent by application of the H-phosphonothioate method, where oxidation was facilitated using elemental sulfur
following completion of oligonucleoside H-phosphonothioates assembly, as with the standard H-phosphonate method.
� 2004 Elsevier Ltd. All rights reserved.
Oligonucleoside phosphorodithioates have proven use-
ful as antisense probes.1–4 Several approaches to the
synthesis of these analogues involving the use of phos-
phorodithioate,1a;b;d;5 thiophosphoroamidite1d;2a;c;5b;6 H-
phosphonothioate,1d;5b;7 H-phosphonodithioate,3;8 phos-
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Scheme 1. Reaction cycle for assembly of oligonucleoside phosphorodithioa

deprotection of the DMTr group) or (i) 0.5M NH2NH2ÆH2O, 1:4 CH3COOH

of the LMNBz group); (b) 0.05M 3, 0.15–0.25M coupling agent, 1:4 pyrid

concd NH4OH/EtOH, rt, 3 h–55 �C, 5 h.
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phorodithioate2b;9 or dithiophospholane10 monomers
have been reported. The H-phosphonothioate method
(Scheme 1) has advantages in that the H-phosphono-
thioate monomers are stable to hydrolysis and oxida-
tion, the cycle time is short, and there is the possibility of
rodithioates
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oxidation without using elemental sulfur in every cycle
but only at the end of the synthesis, just as in the
standard H-phosphonate method. The central issue for
oligonucleoside phosphorodithioates synthesis by the
H-phosphonothioate method involves the selective O-
activation (4) of the H-phosphonothioate 3 by a cou-
pling agent. Stawinski and co-workers reported studies
on the synthesis of deoxynucleoside H-phosphonothio-
ates 3 (R ¼ DMTr) and their use in the synthesis of
dinucleoside H-phosphonothioates.7a;b;11 In a study
pertaining to the synthesis of dinucleoside H-phospho-
nothioates they reported 31P NMR studies on the cou-
pling reactions using nucleoside H-phosphonothioates
with a variety of activators. When diphenyl phospho-
rochloridate (DPCP) or diethyl phosphorochloridate
(DECP) were used as coupling agents, the H-phospho-
nothioate monomers could be selectively activated at the
oxygen and coupled. In reactions when more than an
equimolar amount of a hydroxylic component was used,
some 50-phosphorylation of the nucleoside by DPCP
was observed. On the other hand, side products which
may have been generated from the subsequent reaction
of oligonucleoside H-phosphonothioate with coupling
agents (phosphite triester or hypophosphates) were not
observed. Caruthers and co-workers developed a new
method for the synthesis of oligonucleoside phospho-
nothioates using H-phosphonothioates 3 (R ¼
DMTr).7e;f They reported that oxidation with elemental
sulfur at the end of the synthesis, just as in the standard
H-phosphonate method, gave rise to the formation of
significant amounts of desulfurized products. The syn-
thesis of oligodeoxynucleoside phosphorodithioates was
accomplished by using DPCP as a coupling agent and
incorporating an oxidation step using 2,4-dichloroben-
zyl thiosuccinimide in each coupling cycle.

On the other hand, we reported on the synthesis of
oligonucleoside phosphorodithioates using nucleoside
30-H-phosphonothioates 3 (R ¼ LMNBz) by the stan-
dard H-phosphonate method, where oxidation was
achieved using elemental sulfur following the comple-
tion of oligonucleoside H-phosphonothioates assem-
bly.12;13 The trimer (TpS2TpS2T) was efficiently
synthesized using DECP as a coupling agent.13 The
successful synthesis of TpS2TpS2T prompted us to fur-
ther investigate the utility of this method. We report
here further investigations on the synthesis of oligonu-
Figure 1. Reversed-phase HPLC profiles of crude products of TpS2T preparat

(R ¼ DMTr) in the presence of Piv-Cl (I), (DCP)2CP (II), DPCP (III), DEC
cleoside phosphorodithioates by the H-phosphonothio-
ate method through oxidation using elemental sulfur at
the end of the synthesis.

Based on the aforementioned reports,7a;b;e;f ;11;13 the
reaction of H-phosphonothioate 3 with hydroxylic
component 2 using the bulky phosphorochloridate
derivative as a coupling agent could be expected to be
selectively activated at oxygen and coupled without side
reactions, that is the generation of phosphorothioate
oligomers and the 50-phosphorylation of nucleotide by a
coupling agent. Additionally, using bulky diphenyl-
phosphorochloridate derivatives having substituents on
the phenyl groups as a coupling agent, it was expected
that the selectivity relating to O-activation (4) of the
phosphonothioate 3 by a coupling agent could be
improved by the electronic effect of substituents on the
phenyl groups. The commercially available bis(2,4-di-
chlorophenyl) phosphorochloridate [(DCP)2CP] and
bis(2,6-dimethylphenyl) phosphorochloridate [(DMP)2
CP] were considered as candidates for the effective
coupling agent.

At first, a comparative study was performed of the
various coupling agents, pivaloyl chloride (PivCl),
DPCP, DECP, (DCP)2CP, and (DMP)2CP. These were
employed in the synthesis of oligonucleoside phospho-
rodithioates as exemplified by the synthesis of dimer
TpS2T using 50-O-DMTr-thymidine 30-H-phosphono-
thioate 37a;b on CPG support 1 (R ¼ DMTr) through
oxidation using elemental sulfur as shown in Scheme 1
by manual synthesis.14 Following deprotection of the
DMTr group of 50-O-DMTr-thymidine linked to CPG
support 1, H-phosphonothioate 3 (R ¼ DMTr) was
coupled to thymidine (2) in the presence of either PivCl,
DPCP, DECP, (DCP)2CP, or (DMP)2CP. Following
H-phosphonothioate dimer 5 assembly and subsequent
removal of the DMTr group, oxidation was performed
using a 0.3M solution of elemental sulfur in 1:9
2,6-lutidine/dichloromethane for 1 h to yield the desired
phosphonodithioate dimer, cleavage of TpS2T from the
support, and analysis by reversed-phase HPLC. The
effectiveness of (DMP)2CP can clearly be seen from
the HPLC profiles shown in Figure 1. Given the low
reactivity of the S-nucleophile toward the phosphorus
center,7b the decrease in reactivity of the diphenyl-
phosphorochloridate derivative, due to the effect of the
ions using the 50-O-DMTr-thymidineH-phosphonothioate 3 on CPG 1

P (IV), and (DMP)2CP (V) as a coupling agent, respectively.



Figure 2. Reversed-phase HPLC profiles of crude products of TpS2T

preparations using the 50-O-DMTr-thymidine H-phosphonothioate 3

on CPG 1 (R ¼ DMTr) in the presence of (DMP)2CP as a coupling

agent through treatment with 0.3M solution of S8 in 1:9 2,6-lutidine/

pyridine for 15min (I), 1 h (II), 4 h (III), and 8 h (IV), respectively.
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electron-donating substituents on the phenyl groups, is
likely to have enhanced the selectivity of O-activation
(4) of H-phosphonothioate 3. DECP, which possesses
the electron-donating substituents in the ester moiety,
also showed highly selective O-activation (4).

Investigations were then performed in an effort to
ascertain the stability of phosphorodithioate under
oxidation conditions. In the synthesis of oligonucleoside
phosphonodithioates using H-phosphonothioates 3
(R ¼ DMTr), significant amounts of desulfurized
products were formed during oxidation using elemental
sulfur following completion of H-phosphonothioate
Figure 3. Reversed-phase HPLC profiles of crude products of phos-

phorodithioate oligomer [(TpS2)nT] preparations using the 50-O-

DMTr-thymidine 30-phosphonothioate 3 on CPG 1 (R ¼ DMTr) in

the presence of DECP (I) and (DMP)2CP (II), respectively, through

oxidation with S8 for 1 h at the end of the synthesis. Conditions of

reversed-phase HPLCs: column l BONDASPHERE 5 l C18 (3.9mm

ID · 150mmL); elution buffer 7.25–50% CH3CN/0.1M TEAA (pH7);

flow rate 1mL/min; detection UV at 260 nm.
oligomer assembly as reported by Caruthers and
co-workers, although detailed data was not shown.7f We
investigated the stability of TpS2T under oxidation
conditions. Following H-phosphonothioate dimer 5
(B1 ¼ B2 ¼ T) assembly using (DMP)2CP as a coupling
agent and subsequent removal of the DMTr group,
oxidation was performed using elemental sulfur for ei-
ther 15min, 1, 4 or 8 h. TpS2T was cleaved from the
support and subjected to analysis by reversed-phase
HPLC. It was determined that sulfurization was com-
plete within 15min and that the amount of desulfurized
products ([Rp,Sp]-TpST: [Rp]- and [Sp]-phosphoro-
thioate dimers) increased slightly with increased time
(Fig. 2).

Based on the studies described above, we extended our
studies to the synthesis of long-chain oligonucleoside
phosphonodithioates. Using the same procedure
employed with DECP and (DMP)2CP as coupling
agents through oxidation using elemental sulfur for 1 h
at the end of the synthesis, oligomers [(TpS2)nT:trimer,
tetramer, hexamer, and octamer] were assembled and
HPLC tracings of the each of the resulting mixtures are
shown in Figure 3.15 With (DMP)2CP as a coupling
agent, the oligonucleoside phosphonodithioates were
efficiently synthesized.

The phosphorodithioate oligomers were easily purified
by reversed-phase HPLC, and the electrophoretic pro-
files gave clear single bands (Fig. 4). The structure of the
products were consistent with data derived from 31P
NMR (Fig. 5) and ESI-TOF MS analyses.16

Synthesis of the phosphorodithioate octamer [(TpS2)7T]
was accomplished by employing (DMP)2CP as a coupling
Figure 5. 31P NMR of the octamer [(TpS2)7T] in D2O.

Figure 4. Electrophoresis of the octamer [(TpS2)7T] on a 20% poly-

acrylamide gel containing 7M urea, visualized by UV-shadowing.
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agent in the synthetic cycles using the H-phosphono-
thioate method, and where oxidation using elemental
sulfur was achieved following completion of oligonu-
cleoside H-phosphonothioates assembly. Application of
the approach detailed in this investigation will be useful
in the synthesis of phosphorodithioate-type short oli-
gonucleotides.
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